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Abstract
We point out that the Meissner effect, the process by which a superconductor expels magnetic
field from its interior, represents an unsolved puzzle within the London–Bardeen–Cooper–
Schrieffer theoretical framework used to describe the physics of conventional superconductors,
because it appears to give rise to non-conservation of angular momentum. Possible ways to
avoid this inconsistency within the conventional theory of superconductivity are argued to be
far-fetched. Consequently, we argue that unless/until a consistent explanation is put forth, the
existence of the Meissner effect represents an anomaly that casts doubt on the validity of the
conventional framework. Instead, we point out that three elements of the unconventional theory
of hole superconductivity (that are not part of the conventional theory) allow for a consistent
explanation of the Meissner effect, namely: (i) that the charge distribution in superconductors is
macroscopically inhomogeneous, (ii) that superconducting electrons reside in mesoscopic orbits
of radius 2λL (λL = London penetration depth), and (iii) that spin–orbit coupling plays an
essential role in superconductivity.

1. Introduction

Superconductors do not allow the presence of magnetic fields
in their interior [1]. This fundamental property distinguishes
them from ‘perfect conductors’ and was unexpected before it
was experimentally discovered by Meissner and Ochsenfeld in
1933 [2]. Soon thereafter the phenomenology was described
by London’s equation [3] that relates the current density �J to
the magnetic vector potential �A:1

�J = − c

4πλ2
L

�A (1)

where λL is the London penetration depth. Equation (1)
implies that the magnetic field �B = �∇ × �A obeys the equation
∇2 �B = (1/λ2

L) �B, and consequently that magnetic fields cannot
exist in the interior of a superconductor beyond a distance
λL from the surface. The Bardeen–Cooper–Schrieffer (BCS)
microscopic theory of superconductivity gives a wavefunction
for the superconducting state that predicts [1] the current
response equation (1) to an applied �A, and for these reasons
it is generally believed that BCS–London theory accounts for
the experimentally observed Meissner effect2.

1 Equation (1) is valid in the London gauge, �∇ · �A = 0.
2 There was in fact considerable controversy in the literature initially on
whether or not BCS theory can explain the Meissner effect in a gauge-
independent way. See [4].

However, neither BCS theory nor London theory
address the question of how the system attains the final
(superconducting) state where the magnetic field is excluded
starting from an initial (normal) state where magnetic field
exists in the interior [5]. Specifically there are two questions
to answer. (i) What is the nature of the force that causes the
superfluid electrons near the surface to all acquire a velocity in
the direction required to screen the external magnetic field? (ii)
How is the angular momentum of the electrons in the Meissner
current compensated? In particular, we argue here that
the conventional framework appears to be incompatible with
angular momentum conservation, and hence cannot explain the
Meissner effect in a consistent way.

There have been attempts to explain the Meissner effect
using classical electrodynamics [6, 7], motivated by the
fact that Planck’s constant does not enter the expressions
for the Meissner current nor the London penetration depth.
Furthermore, Meissner-effect-like properties of magnetized
classical plasmas have been noted [8, 9]. Much earlier,
Heisenberg [10]3 attempted to explain the Meissner effect
using only the classical Lorentz force. However, there is
general consensus (with which we agree) that a purely classical
theory cannot explain the Meissner effect [11–13], hence that
quantum mechanics plays a fundamental role. Still, we argue

3 London [11] showed this paper to be incorrect.
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that (even though this is not generally recognized) precisely
how quantum mechanics explains the Meissner effect is not
understood. Moreover, we argue that a consistent explanation
of the Meissner effect may in fact be beyond the confines of
the conventional theory to an extent that calls the validity of
the entire conventional framework into question.

The question of what is the force propelling electrons
to develop the Meissner current [14] in the transition to the
superconducting state in the presence of a magnetic field is
strangely absent in the literature on superconductivity, even
in the early days. As an exception, we mention a paper by
London in 1935 [15] where he discusses the motion of the
phase boundary between normal and superconducting phases
in a magnetic field and states, ‘The generation of current in
the part which becomes supraconductive takes place without
any assistance of an electric field and is only due to forces
which come from the decrease of the free energy caused by the
phase transformation’, but does not discuss the nature of these
‘forces’. Recently, Nikulov postulated a ‘quantum force’ for
superconductors so that ‘superconducting pairs are accelerated
against the force of the electric field. . .’ [16]. Except for
these rare instances, we are not aware of any discussion
of this question in the literature. The related question of
angular momentum conservation has never been raised to our
knowledge. The purpose of this paper is to call attention to
these questions and propose answers to them.

2. Angular momentum in the Meissner current

We assume that the orbital magnetic response currents are
carried by bare electrons of mass me and charge e with
volume number density ns, both in the normal and in the
superconducting state. The London penetration depth is given
by [1]

1

λ2
L

= 4πnse2

mec2
(2)

and is of order several hundred angstrom in a conventional type
I superconductor. Consider a long metallic cylinder with a
magnetic field �B pointing along its axis. In the normal state,
the Landau diamagnetic susceptibility [17]

χLandau = − 1
3μ

2
Bg(εF) (3)

(μB = eh̄/2mec = Bohr magneton, g(εF) = density of states
at the Fermi energy) can be interpreted as arising from Larmor
orbits perpendicular to the applied magnetic field

χLarmor = − nse2

4mec2
a2 (4)

of radius a = 1/kF, for a free electron density of states at
the Fermi energy g(εF) = 3ns/2εF, with εF = h̄2k2

F/2me. In
the perfectly diamagnetic superconducting state, the magnetic
susceptibility is

χLondon = − 1

4π
= − nse2

4mec2
(2λL)2, (5)

and is larger than the normal state susceptibility equation (3)
by a factor (2λLkF)

2.

Similarly, the mechanical angular momentum density
induced by a perpendicular magnetic field �B on electrons in
orbits of radius a in the plane perpendicular to �B is

�le = −ens

2c
a2 �B (6)

and in the normal state the mechanical angular momentum
density induced by the applied magnetic field is

�ln
e = −ens

2c
(k−1

F )2 �B (7)

arising from electrons in orbits of radius k−1
F . In the

superconducting state, the induced surface current density that
suppresses the interior magnetic field has magnitude

J = |e|nsvs = c

4πλL
B (8)

where vs = |e|λL B/mec is the velocity of the superfluid
electrons near the surface. For a cylinder of radius R, each
electron in the Meissner current carries angular momentum
mevs R, and there are N = 2π RλLhns electrons in the surface
layer of thickness λL for a cylinder of height h. Hence the total
electronic angular momentum per unit volume is

�ls
e = − mec

2πe
�B = −ens

2c
(2λL)2 �B (9)

and again is larger than that in the normal state by a factor
(2λLkF)

2, which is of order 105 or larger for a typical type I
superconductor. Where did the extra angular momentum come
from?

In the foregoing we have assumed that the mechanical
angular momentum in the Meissner current is carried by
bare electrons of mass me. This has been experimentally
demonstrated by measuring the angular momentum acquired
by a superconducting body when a magnetic field is applied
(gyromagnetic effect) [18–20]. The angular momentum of the
body is found to be given by equation (9) with opposite sign
(i.e. antiparallel to the applied magnetic field), corresponding
to the equal and opposite momentum acquired by the positive
ions. This result can be simply understood as arising from
the effect of the induced Faraday electric field on electrons
and ions when a magnetic field attempts to penetrate a
superconductor. The corresponding experiment for the case
where the magnetic field is expelled from the superconductor
has not been performed, nor has the question been considered
theoretically (except for [5]).

3. Meissner effect in the conventional framework

The conventional theory has not addressed the question of
how conservation of angular momentum is preserved in the
transition to the superconducting state in the presence of an
external magnetic field. There is no obvious ‘force’ that will
cause the electrons near the surface to start moving all in the
same direction to generate the Meissner current, and would at
the same time give rise to a ‘reaction force’ to maintain the total
angular momentum equal to zero. It appears to be generally
assumed that since the free energy of the superconductor is

2
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lower in the state where the magnetic field is excluded, the
system will ‘find its way’ through statistical fluctuations to this
low energy state where the Meissner current flows. Even if one
were to accept this reasoning, it does not explain how angular
momentum is conserved. Let us try to understand this question
within the conventional theory.

We will not attempt to model in detail the process by
which the superconductor expels magnetic field from its inte-
rior. The question has been addressed experimentally [21, 22]
and it appears that highly irregularly shaped structures form
in the transition process depending on the experimental condi-
tions. For the purposes of this paper we are interested in a con-
servation law relating the initial and final states and because of
this the details of the intermediate processes are largely irrele-
vant.

In the process of cooling the system from above to below
Tc, no angular momentum is transferred from the environment.
Similarly, in changing the external magnetic field from just
above the critical magnetic field Hc to just below Hc only a
tiny amount of angular momentum can be generated, which
cannot account for the difference between equation (7) and
equation (9)4. The angular momentum of the electromagnetic
field

�Lfield = 1

4πc

∫
d3r �r × ( �E × �B) (10)

is zero both in the normal and in the superconducting states,
since no electric field �E exists after the system has reached
equilibrium within the conventional theory. Furthermore we
can assume that the transition occurs sufficiently slowly that no
electromagnetic momentum is carried away by radiation during
the transition process. Consequently, the difference between
the angular momenta equations (7) and (9) has to be picked up
by the ionic lattice.

There are two ways in which the ionic lattice can
acquire angular momentum: through interaction with the
electromagnetic field, and through direct interaction with the
electrons. We discuss these in turn.

As the electrons develop a Meissner current, the magnetic
field becomes smaller in the interior of the superconductor
(magnetic field lines are pushed out). By Faraday’s law, this
change in magnetic flux generates an electric field in a direction
such that it opposes the change in magnetic flux, as shown
in figure 1. This electric field pushes the positive ions in
the same direction as the electrons in the Meissner current,
i.e. to acquire mechanical angular momentum parallel to the
electronic angular momentum in the Meissner current [5], so it
is clear that this effect has the wrong sign to resolve the angular
momentum question.

The Faraday field also imparts angular momentum to
the electrons in the interior, which is antiparallel to the
electronic angular momentum of the Meissner current. Since
the system is charge neutral, this electronic angular momentum
is equal and opposite to the angular momentum imparted by the
Faraday field to the ions. This interior motion of the electrons
gives rise to eddy currents (antiparallel to the Meissner current)

4 Furthermore the Faraday electric field generated by lowering the external
magnetic field points in a direction opposite to what is needed to account for
the missing angular momentum.

Figure 1. Charge velocities in the transition to the superconducting
state in the presence of a magnetic field B pointing up, which is
being expelled from the interior of the superconductor. The electrons
in the Meissner current have counterclockwise velocity vs. In the
interior, a counterclockwise electric field EFaraday is generated as the
magnetic field is expelled, which imparts a transient equal and
opposite angular momentum to interior electrons and ions that is
canceled as the system reaches the final equilibrium state. The
interior electron motion is manifested in transient eddy currents.

during the transition process, as indicated schematically in
figure 1. Eventually these eddy currents die out by collisions
between the electrons and the ions as the system reaches
equilibrium, and in the process the electronic and ionic angular
momenta acquired due to the Faraday field cancel out.

The Faraday field also acts on the electrons and ions
within a London penetration depth of the surface, and in that
region it also transfers equal and opposite angular momenta
to the electrons and ions. However, the angular momentum
transferred to the electrons is of opposite sign to the one
acquired by the electrons in the Meissner current, and the
angular momentum transferred to the ions is of opposite sign to
what is needed to conserve angular momentum. We conclude
from these considerations that interaction of electrons and
ions with the electromagnetic field cannot solve the angular
momentum question, and consider next possible direct angular
momentum transfers between electrons and ions.

The conduction electrons interact with the periodic ionic
lattice and its static (due to impurities) and dynamic (due to
lattice vibrations) deviations from periodicity. Let us assume
first there are no impurities. The effective electron–electron
interaction resulting from the electron–phonon interaction will
not change the center of mass momentum of the interacting
electrons nor transfer momentum between electrons and ions.
The periodic ionic lattice can be regarded as a classical system
of positive charges, which is initially at rest. Hence we
argue that the process by which the ions acquire angular
momentum should be readily understandable through classical
electromagnetism. Electrons interact with the ions at rest
through electrostatic attraction. The time derivative of the
angular momentum of a given ion α with charge Z |e| is simply
the sum of the torques due to the negative electrons:

d �Lα

dt
= �Rα × �Fα = �Rα ×

∑
i

Ze2

| �Rα − �ri |3
�ri (11)

where �Rα and �ri are the position vectors of the αth
ion and the i th electron. Within the conventional theory
of superconductivity the spatial distribution of electrons is
homogeneous at all times, which implies that the sum in

3
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equation (11) is zero. Hence neither the angular momentum
of a given ion nor the total angular momentum of the ions

�L ions =
∑

α

�Lα (12)

can change through the electrostatic interaction with the
electrons. If the ions never acquire motion, no magnetic
Lorentz force can act on them either.

However, the above argument holds rigorously only in the
absence of disorder, and one may argue that while in such
cases the superconducting state cannot be reached, for any non-
zero disorder electrons would be able to transfer the required
angular momentum to the ions as the system develops the
Meissner current [23]. Let us examine such a possible scenario
to assess its feasibility.

The superfluid electrons are insensitive to non-magnetic
disorder [24] and hence will not transfer momentum to the
ions through interaction with impurities. However, a system
of ‘normal’ electrons moving with total momentum �P will
certainly transmit momentum to ions at rest in the presence
of impurity scattering. Consider a metal at zero temperature in
an external magnetic field that is lowered from right above to
right below the critical field. The electrons can extract angular
momentum from the electromagnetic field only if there is a
radial flow of charge [5] (see next section). However no radial
charge flow is predicted in the conventional theory. Hence, to
explain the Meissner effect and conserve angular momentum
we need to assume that through some quantum-mechanical
process some electrons will acquire angular momentum in
the direction of the Meissner current, while other ‘normal’
electrons will acquire equal and opposite angular momentum
which they then transfer to the ionic lattice. Furthermore,
because we are at zero temperature, no ‘normal’ conduction
electrons can remain at the end of the process.

The maximum momentum that an electron with momen-
tum �p can transfer to a much more massive ion in a head-on
collision is 2 �p, whence the electron acquires momentum— �p.
A possible ‘cartoon’ scenario might be that for each conduc-
tion electron (or half-a-Cooper pair) that condenses into the
superconducting state and acquires velocity �vs there is another
electron that remains normal and acquires (through the same
quantum-mechanical process that imparted momentum to the
electron becoming superfluid) equal and opposite velocity and
momentum. Then, the ‘normal’ electron could ‘bounce off’ an
ionic impurity, reverse its momentum and subsequently con-
dense into the superfluid state. In this way, the ions would ac-
quire an angular momentum density equation (9) with opposite
sign, satisfying angular momentum conservation.

However, it is statistically impossible that each normal
electron would exactly reverse its momentum in collisions
with the ions. Rather, a system of normal electrons with
total momentum �P that undergoes random collisions with
ions will eventually relax and come to rest relative to the
ions, transmitting its momentum �P (rather than 2 �P) to the
much more massive ions. So to satisfy angular momentum
conservation we need to assume that the electrons that initially
remain normal acquire through a quantum-mechanical process
the full angular momentum—�ls

e (equation (9)). This requires

that both the electrons that initially become superfluid and
those that remain normal acquire speeds on average larger
than vs (2vs each on average if their number is equal). Then,
one could imagine that as the normal electrons lose their
momenta in scattering off the ions they will condense into the
superconducting state and share in the motion of the superfluid,
and at the end of the process all conduction electrons will be
superfluid with angular momentum equation (9), and the ions
will have acquired equal and opposite angular momentum.

One can devise other more elaborate variants of these
scenarios. However, they all require that in the process
of condensation the electrons that become superfluid first
acquire speeds on average larger than vs. We argue that
such scenarios are far-fetched and are certainly not described
by the conventional theory in its current form: there is no
mechanism in the conventional theory for the condensing
superfluid electrons to acquire average speed larger than vs,
since the speed vs is constrained by a quantum condition on
the phase of the superfluid wavefunction. Thus, we argue
that within the conventional theory of superconductivity there
exists an unaccounted angular momentum

�Lmissing = V (�ls
e − �ln

e ) = V
|e|ns

2c
k−2

F
�B
((

2λL

k−1
F

)2

− 1

)
(13)

(V = sample volume) when a metal enters the superconduct-
ing state in the presence of an external magnetic field �B. Con-
sequently, (at least in its present form) the conventional theory
is internally inconsistent.

4. Meissner effect and r = 2λL orbits

It is a remarkable fact that within the conventional theory of
superconductivity it has not been recognized that electronic
orbits of radius 2λL play a key role. This was proposed in [25]
and shown to lead to the predicted ‘spin-Meissner effect’.

The simplest argument leading to 2λL orbits is the
following. For a cylinder of radius R and height h, and
Meissner current residing in a surface layer of thickness λL

with ns carriers per unit volume moving with speed vs, the total
mechanical angular momentum carried by the surface current
is

LMeissner = [ns2π RλLh] × [mevs R] (14a)

where the first factor is the number of electrons in the surface
layer, and the second factor the angular momentum of each
electron in the surface layer. By simply changing the order of
the factors this can be rewritten as

LMeissner = [nsπ R2h] × [mevs(2λL)] (14b)

where the second factor in square brackets is the angular
momentum of an electron in an orbit of radius 2λL, and the first
factor is the total number of such orbits (i.e. the total number
of electrons) in the bulk.

Orbits of radius 2λL also follow directly from the fact that
when a magnetic field is applied to a superconductor, an equal
and opposite magnetic field is generated in the interior. Let us
go through the simple argument. The relation between orbital

4
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magnetic moment �μ and orbital angular momentum �le for an
electron of charge e and mass me is

�μ = e

2mec
�le. (15)

In an orbit of radius a with speed v, the orbital angular
momentum is le = meva and the magnetic moment is

μ = ev

2c
a. (16)

Application of an external magnetic field generates a Faraday
field, satisfying

∮
�E · d�l = −1

c

∂

∂ t

∫
�B · n̂ dS (17)

and for an orbit of radius a

E = a

2c

∂ B

∂ t
(18)

so the change in speed for an electron in such an orbit is

dv

dt
= e

me
E = ea

2mec

∂ B

∂ t
(19a)

�v = ea

2mec
B. (19b)

Note that to lowest order the radius of the orbit does not change
as the magnetic field is applied, because the magnetic Lorentz
force precisely cancels the increased centripetal acceleration
resulting from the change in speed:

�

(
me

v2

a

)
= 2me

v�v

a
= e

v

c
B (20)

for �v given by equation (19b).
Consequently the induced magnetic moment per electron

�μ and the induced magnetization per unit volume M are

�μ = ea

2c
�v = e2a2

4mec2
B (21a)

M = ns�μ = nse2a2

4mec2
B. (21b)

For a long cylinder, the magnetic field in the interior generated
by a uniform magnetization M is Bind = 4π M . Hence to
completely suppress the applied field B we require M =
B/4π , hence

B

4π
= ns�μ = nse2a2

4mec2
B (22)

so the required radius of the orbit is

a =
√

mec2

πnse2
(23)

or, using equation (2)
a = 2λL. (24)

Equivalently, the fact that superconducting electrons
reside in orbits of radius 2λL can also be deduced from an

energetic argument. In changing the applied magnetic field
from B to B +�B , the electron in an orbit of radius a changes
its energy by

�ε = B�μ = e2a2

4mec2
B�B. (25)

Integrating from 0 to B we obtain for the increase in energy
per unit volume, for ns electrons per unit volume each residing
in an orbit of radius a

u ≡ ns�ε = nse2a2

8mec2
B2. (26)

The system will remain superconducting until this energy
cost equals the superconducting condensation energy per unit
volume, H 2

c /8π , with Hc the thermodynamic critical field [1].
This will of course occur when B = Hc, hence

u = nse2a2

8mec2
H 2

c = H 2
c

8π
(27)

leading again to equation (23) for the radius of the orbits, and
hence to a = 2λL.

The arguments spelled out in detail here merely restate the
fact that equations (5) and (9) can be interpreted as resulting
from electrons occupying Larmor orbits of radius r = 2λL.

5. Meissner effect in the theory of hole
superconductivity

Besides the importance of 2λL orbits, two other elements of the
theory of hole superconductivity [26, 27], namely the predicted
existence of charge inhomogeneity [28] and the essential role
of spin–orbit coupling [25], play a key role in understanding
the Meissner effect. Charge inhomogeneity is accompanied by
the presence of an internal electric field, and hence allows for
some angular momentum to be carried by the electromagnetic
field (equation (10)); the spin–orbit interaction is a velocity-
dependent electron–ion interaction that allows for transmission
of angular momentum from the electrons to the ions even in
the absence of disorder. It should be pointed out that neither of
these elements was introduced in the theory in order to account
for the Meissner effect [27].

Qualitatively, it is easy to see that radial motion of charge
is likely to play an essential role in the Meissner effect [14].
A radially outgoing electron in a magnetic field �B acquires
through the action of the magnetic Lorentz force an azimuthal
velocity in direction −r̂ × B̂, which is the azimuthal direction
of the electrons in the Meissner current. The theory of hole
superconductivity predicts that negative charge is expelled
from the interior towards the surface when a metal makes
a transition to the superconducting state, whether or not an
external magnetic field is present [28].

Equations (4) and (5) for the diamagnetic susceptibility
in the normal and superconducting state indicate that the
transition to superconductivity can be understood as an
expansion of the radius of the electronic orbit from a
microscopic a = k−1

F to a mesoscopic 2λL [25]. This
interpretation is corroborated by equations (7) and (9): the

5
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angular momentum of the electrons in the Meissner current in
the surface layer arises from mesoscopic orbits of radius 2λL

for each electron in the bulk that expanded from a microscopic
radius a = k−1

F in the normal state (equation (7)). As the
expanding electronic orbit cuts through magnetic field lines the
electron acquires angular momentum due to the Lorentz force
acting on it, satisfying

lfinal − linitial = −ns
e

2πc
(φfinal − φinitial) (28)

where φ is the magnetic flux enclosed in the orbit.
Equation (28) exactly accounts for the difference between
the angular momenta equations (7) and (9) for initial radius
a = k−1

F and final radius 2λL, and provides a ‘dynamical’
explanation of the Meissner effect [25] (i.e. it explains the
origin of the force that causes the electrons to move in the
direction required for the Meissner current). However, we
still need to understand how this extra electronic angular
momentum is compensated.

Assume every electron in the cylindrical sample undergoes
such an orbit expansion. The electrons within a distance 2λL of
the surface will have their orbits ‘spill out’ beyond the surface
of the superconductor, leaving behind a positive surface layer
of charge density σ = |e|nsλL, which will give rise to a ‘double
layer’ with an electric field

E = 4π |e|nsλL = mec2

eλL
(29)

pointing radially outward, as shown schematically in figure 2.
The electric field can be assumed to be uniform over a
thickness λL, and it gives rise to an angular momentum of the
electromagnetic field (equation (10))

�Lfield = 2πens

c
λ2

L R2h �b = V
ens

2c
(2λL)2 �B (30)

which is equal and opposite to the angular momentum
of the Meissner current equation (9). Thus, (neglecting
the small angular momentum in the normal state) in this
scenario the angular momentum in the electromagnetic field
accounts for the ‘missing’ angular momentum equation (13),
and the angular momentum puzzle is resolved. In other
words, the ‘reaction’ to the angular momentum imparted
by the electromagnetic field to the expanding electron orbit
is stored as equal and opposite angular momentum in the
electromagnetic field [30].

Unfortunately, this is not a realistic scenario. The electric
energy density in the assumed double layer is an enormous
E2/8π = nsmec2/2, and the electric energy density per unit
volume in the entire sample is

u = nsmec
2 λL

R
(31)

which is much larger than the superconducting condensation
energy density even for a sample of R ∼ 1 cm. The electric
field in the double layer equation (29) is of order 1011 V cm−1

which is clearly unsustainable. It is clear that the interaction
of electrons with the positive ionic lattice will prevent the

Figure 2. In the normal state, electrons in a magnetic field traverse
microscopic orbits of radius a = k−1

F (left side). When the system
goes superconducting, the orbits expand to radius 2λL (right side).
Assuming the centers of the orbits do not move, negative charge
spills out and a surface ‘double layer’ of charge of thickness ∼ 2λL is
created with outward pointing electric field.

electrons from spilling out a distance 2λL as depicted in
figure 2. What is not yet clear is how the ions, in the process of
preventing the electrons from spilling out to the extent shown
in figure 2, will acquire compensating angular momentum in
the required direction.

In [5] we explored a related scenario, using the fact that
the theory of hole superconductivity predicts that a positive
charge density ρ0 exists uniformly distributed in the interior
of the superconductor and a negative charge density ρ− in a
surface layer of thickness λL [28]. To account for a suppression
of the internal magnetic field to a fraction y of its original
value and compensating the electronic angular momentum with
momentum in the electromagnetic field requires an electric
field near the surface [5]

Em = 4mec2

eR

1 − y

y
(32)

hence, for example, for a 99% suppression (y = 0.01) with
R = 1 cm, Em = 2 × 108 V cm−1. While this electric field is
three orders of magnitude smaller than equation (29) it is still
too large, and in addition this scenario cannot account for a full
Meissner effect, since Em diverges as y → 0 (equation (32)).
We conclude from these considerations that it is impossible
to explain the Meissner effect in superconductors without a
mechanism that allows the ions to acquire angular momentum
in a direction opposite to the applied magnetic field through
interaction with the electrons.

One possible way for ions to acquire angular momentum
is depicted in figure 3. Suppose that when superfluid electrons
are expelled towards the surface there is a radial backflow of
’normal’ electrons attempting to maintain charge neutrality.
The normal electrons will be deflected by the Lorentz force in
the opposite direction to the superfluid electrons, as shown in
figure 3. In the presence of disorder, these normal electrons
will scatter off the ions and transmit their momenta to the
ions, which will thus acquire angular momentum in a direction
opposite to the Meissner current. To achieve a full Meissner
effect, it is necessary that a fraction ∼λL/R of electrons in the
surface layer of thickness λL flow there from the interior [29],
and the same amount has to flow in from the surface layer and
transmit their momenta to the ions.

While somewhat less far-fetched than the scenario
described earlier, in the conventional framework (at least this
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Figure 3. Superfluid electrons flow from the interior towards the
surface and are deflected to the left by the magnetic field pointing up.
Normal electrons backflow from the surface towards the interior and
are deflected to the right by the magnetic field. The momentum in
this normal current is transferred to the ions by collisions with
impurities.

scenario provides an origin for the azimuthal forces giving
rise to the Meissner current and ionic countercurrent), this
scenario also requires a division of electrons into ‘normal’ and
‘superfluid’. While it may contribute at finite temperatures, it
cannot play a role as the temperature approaches zero in the
process where the external magnetic field is changed from just
above to just below the critical field. Instead, we argue in what
follows that the spin–orbit interaction plays a crucial role in the
Meissner effect.

6. Role of the spin–orbit interaction

The spin–orbit interaction offers a natural solution to the
puzzle. In the spin-Meissner effect scenario proposed in [25],
as the electron orbit radius expands from k−1

F to 2λL, a torque
�τie is exerted by the positive ionic charge on the equivalent
electric dipole �p [33] resulting from the moving electron
magnetic moment �μ = eh̄/(2mec)�σ

�p = �v
c

× �μ (33a)

�τie = �p × �Ei =
( �v

c
× �μ

)
× �Ei (33b)

where �Ei is the radial electric field generated by the positive
ionic charge density |e|ns

�Ei = 2π |e|ns�r . (34)

This torque causes electrons of opposite spin to acquire
azimuthal velocities in opposite directions, giving rise to a
spontaneous spin current (spin-Meissner effect) [25]. By
Newton’s third law, the torque exerted by the ions on the
electrons is necessarily accompanied by an equal and opposite
torque exerted by the electrons on the ions:

�τei = −
( �v

c
× �μ

)
× �Ei = − �p × �Ei. (35)

In the absence of external magnetic field, spin up and
spin down electrons acquire opposite angular momenta, and
exert equal and opposite torques on the ions, hence the net
angular momentum transferred to the ionic lattice is zero. The

Figure 4. Up and down magnetic moments get deflected in opposite
directions due to the torque exerted by the radially pointing electric
field from the positive charge distribution. The figure shows the
equivalent electric dipoles, equation (33a), as they move out and
after they acquired the azimuthal velocity.

resulting azimuthal motion of the electrons (figure 4) can be
understood as resulting from the action of an effective ‘spin–
orbit’ magnetic field [25]

�Bσ = 2πns �μ ≡ −Bso �σ (36)

of magnitude Bso pointing antiparallel to the electron spin
(parallel to its magnetic moment). Expansion of the electron
orbit to radius 2λL results in an azimuthal velocity of
magnitude [25]

v0
σ = |e|λL

mec
Bso = h̄

4meλL
(37)

with opposite spin electrons orbiting in opposite directions.
In the presence of an external magnetic field �B, the effective
magnetic field acting on the electrons has magnitude (Bso ±
B), with the + sign corresponding to electrons with spin
antiparallel to �B. The resulting azimuthal velocities are

vσ = |e|λL

mec
(Bso ± B). (38)

Because the speed acquired by opposite spin electrons is
different, the net torque exerted by electrons on the ions,
equation (35), no longer vanishes. The speed acquired by
electrons with magnetic moment parallel to the magnetic field
is larger, and consequently the net torque exerted by electrons
on ions points antiparallel to the applied magnetic field. Thus,
the lattice acquires angular momentum in a direction opposite
to the net angular momentum acquired by the electrons.

Figure 5 illustrates in more detail how the net torque on the
ions arises. Electrons with magnetic moment pointing out of
(into) the paper move outward a distance �r along trajectories
labeled 1 and 3 respectively. In the process they acquire a
perpendicular impulse

�I =
∫

F dt = e

c
�r(Bso ± B) (39)

where the + (−) sign applies to trajectory 1 (3). This
impulse causes deflection in the perpendicular direction,

7
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Figure 5. Electron with magnetic moment out of (into) the paper
moves along paths 1 and 2 (3 and 4). The impulse in the transverse
direction (equation (39)) acquired by the electron moving along 1 is
larger than for the electron moving along 2 for magnetic field
pointing out of the paper. The resulting effective dipole moment �p
(equation (33a)) is larger for an electron moving along path 3 than it
is for an electron moving along path 4, as indicated schematically by
the length of the vertical arrows. Consequently the torque
equation (35) exerted by the electron on the ions along path 2 is
larger in magnitude than that exerted by the electron along path 4.

Figure 6. Simplified schematic trajectories and associated electric
dipole moments �p for electrons with magnetic moment out of the
paper (left picture) and into the paper (right picture) as the
wavefunction expands to radius 2λL. The speed of the electron on the
right picture is smaller, resulting in smaller values of �p along the
trajectory and smaller torque exerted on the ions.

trajectories 2 and 4, with larger speed for the electron along
trajectory 2, resulting in a larger effective dipole moment �p
(equation (33a)). The resulting torque exerted on the ions,
equation (35), is larger in magnitude for the electron moving
along the path 1–2 (and pointing into the paper) than for the
electron along the path 3–4, that exerts a smaller torque on the
ions in a direction pointing out of the paper.

Figure 6 shows simplified schematic trajectories of
electrons of opposite spin as their wavefunction expands to
radius 2λL. For the electron with magnetic moment pointing
out of the paper, the velocity acquired is larger and so is the
resulting effective electric dipole moment, resulting in a larger
torque exerted on the ions over a longer trajectory. Once
the motion becomes azimuthal the effective electric dipole
moment is parallel to the ionic electric field and the torque
vanishes.

However, the actual motion, to the extent that it can be
described classically, is likely to be more complicated than
depicted in figure 6. When electron orbits expand from
radius k−1

F to radius 2λL their center will not stay fixed, since
that would result in the expulsion of an enormous amount
of negative charge, as depicted in figure 2. The theory of

Figure 7. Schematic trajectories for an electron with magnetic
moment out of the paper (full line, left side of the picture) and into
the paper (dashed line, right side of the picture) as their wavefunction
expands to radius 2λL. The electron depicted by the full line is
subject to a larger effective magnetic field than the electron depicted
by the dashed line. As it traverses its looped trajectory it gains speed
and angular momentum pointing out of the paper, and imparts to the
ions a compensating angular momentum pointing into the paper. The
dashed line electron is subject to a smaller magnetic field and its
trajectory does not loop.

hole superconductivity predicts that the excess negative charge
density ρ− in the surface layer of thickness λL that arises from
expansion of the orbits is given by [31]

ρ− = nsμB

2λL
= ens

(
λc

8πλL

)
(40)

with λc = h/mec is the Compton wavelength of the electron.
ρ− is a small fraction of the total superfluid density ens

(∼10−6). This implies that the centers of the orbits are pulled
inward by the ions as the orbits expand.

The Larmor radius for spin down (σ = −1) and spin up
(σ = +1) electrons in the presence of magnetic and spin–orbit
fields is

rσ = mec

e(Bso − σ B)
v⊥. (41)

As the orbit expansion starts, up and down spin electrons start
moving outward with the same acceleration and acquire similar
speeds v⊥. The deflecting force is larger for the downspin
electron (magnetic moment pointing up), resulting in a smaller
Larmor radius (equation (41) with σ = −1), as depicted in
figure 7. As the downspin electron loops in a counterclockwise
direction ( �Le out of the page) it gains increasing azimuthal
speed and it imparts clockwise angular momentum to the ions
( �L i into the page) as shown in figure 7.

In the end, the angular momentum in the Meissner
current is compensated partly by angular momentum in
the electromagnetic field and partly by angular momentum
acquired by the ions. However, the latter is much larger than
the former. The angular momentum acquired by an electron
near the surface moving an outward distance λL in the magnetic
field �B is

�lelectron = −e

c
RλL �B (42)

since the change in flux enclosed by the orbit is �φ =
2π RλL B . The number of electrons acquiring this angular

8
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Figure 8. Schematic depiction of a superconductor in an applied
magnetic field. There is excess negative charge density ρ−
(equation (40)) in the surface layer of thickness ∼ λL, where the
magnetic field penetrates. Electrons reside in orbits of radius 2λL

throughout the bulk, but only those near the surface are shown. The
body as a whole rotates in a clockwise direction, as indicated by the
arrows in the inner circle. Electrons of spin down rotate in a
counterclockwise direction (indicated in the figure), electrons of spin
up rotate in a clockwise direction at slower speed [25]. The total
angular momentum is zero.

momentum from the electromagnetic field for a cylinder of
radius R and height h is 2π RλLhρ−/e, resulting in an angular
momentum density from the expelled charge given by

�ls
e,expelled = −ρ−

2c
(2λL)2 �B. (43)

That this coincides with the angular momentum per unit
volume residing in the electromagnetic field can be seen from
equation (10), with �lfield ≡ �Lfield/(π R2h):

�lfield = 1

2πc
λL Em �B = ρ−

2c
(2λL)2 �B (44)

where Em is the (average) electric field in the surface layer
of thickness λL, and is given by Em = −4πλLρ− for charge
neutrality. Hence the angular momentum acquired by the ions
is

�lions = ens

2c
(2λL)2 �B (45)

and the total angular momentum in the Meissner current is

�ls
e = − 1

2c
(ens + ρ−)(2λL)2 �B (46)

compensated by �lfield + �lions. Note that the fraction of angular
momentum carried by the electromagnetic field is only

lfield

ls
e

∼ ρ−
ens

= λc

8πλL
∼ 10−6 (47)

so that 99.9999% of the electronic angular momentum is in fact
compensated by ionic angular momentum acquired through
the spin–orbit interaction. Figure 8 depicts schematically a
superconductor in an applied magnetic field.

7. Discussion

In this paper we have pointed out that the conventional theory
of superconductivity appears to be incompatible with angular

momentum conservation. It requires the electrons near the
surface to acquire a net angular momentum to generate the
current to cancel the magnetic field in the interior, but does
not provide a mechanism by which this angular momentum
would be compensated. The electromagnetic field cannot
carry angular momentum in the conventional theory because
of the assumption that no electric field exists in the interior
of superconductors. No mechanism is provided in the
conventional theory to impart the ionic lattice with angular
momentum equal and opposite to the electronic angular
momentum of the Meissner current. We have discussed
possible scenarios within the conventional theory to resolve the
puzzle and argued that they are far-fetched. Furthermore, the
conventional theory does not explain how the electrons acquire
the velocity of the Meissner current in the first place.

In agreement with the general consensus, we believe
that quantum mechanics is essential to understand the
Meissner effect. However, there is no need to invoke
special quantum-mechanical principles applicable exclusively
to superconductors to explain it [16, 32]. Instead, we
argued here that the underlying quantum physics responsible
for the Meissner effect relies on two well-known physical
effects that do not play a role in the conventional theory of
superconductivity, but are essential ingredients of the theory
of hole superconductivity. (i) The first is the fact that a
quantum particle confined to a small dimension has a high
kinetic energy and exerts ‘quantum pressure’ to expand its
wavefunction to lower its kinetic energy—expansion involves
radial outgoing motion, and radial motion in the presence of
a perpendicular magnetic field generates an azimuthal current
through the magnetic Lorentz force. (ii) The second is the
effect of the spin–orbit interaction (in conjunction with the
orbit expansion), which gives rise to a velocity-dependent
interaction between electrons and ions, allows interchange of
angular momentum between electrons and the lattice. Note
that for ‘quantum pressure’ to play an important role requires
that the electronic wavefunction in the normal state is confined
to small dimensions, hence an almost full band, and thus hole
carriers in the normal state, as required in the theory of hole
superconductivity.

The theory of hole superconductivity provides a simple
and intuitive explanation for how electrons develop the
Meissner current and for how angular momentum is conserved:
expansion of the electronic wavefunction, from a microscopic
dimension to a mesoscopic orbit of radius 2λL, gives rise
to an outflow of negative charge from the interior towards
the surface as the system goes superconducting, and explains
dynamically how the angular momentum of the Meissner
current is generated, without the need to invoke mysterious
‘quantum forces’ [16, 32] nor statistical fluctuations. Such
physics arises also in classical plasmas, where it is known
as ‘Alfven’s theorem’ [34]: in a perfectly conducting fluid,
magnetic field lines move with the fluid. Furthermore, the
outward charge flow gives rise to a spin current arising from
the spin–orbit torque exerted by the positive ions on the
moving magnetic moments [35]. We have earlier proposed
this effect as a universal origin for the anomalous Hall effect
in ferromagnets [36] and for the spin Hall effect [37]. As
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pointed out here, Newton’s law requires an equal and opposite
torque exerted by the electrons on the ions, which has opposite
sign for up and down electrons, giving zero net torque in the
absence of a magnetic field. In the presence of a magnetic field,
however, the torque exerted by opposite spin electrons on the
ions does not cancel and gives rise to a net angular momentum
transfer from the electrons to the ions.

Thus, using general physical principles and without
invoking either statistical fluctuations or disorder effects, we
are able to explain both the origin of the force giving rise to the
electronic Meissner current in superconductors, as well as how
the angular momentum in the Meissner current is compensated,
within the framework of the theory of hole superconductivity.
Part of the angular momentum of the Meissner current is
compensated by angular momentum in the electromagnetic
field, because (unlike in the conventional theory) an electric
field does exist in the interior of a superconductor within
our theory. The rest is compensated by angular momentum
acquired by the ionic lattice through the spin–orbit interaction,
which plays an essential role in our theory (and plays no role
in the conventional theory).

However, even though conceptually it plays an essential
role, the amount of angular momentum carried by the
electromagnetic field is only a small fraction of the total
‘missing’ angular momentum (equation (47)). Thus, contrary
to our earlier suggestion [5], measuring the difference between
the angular momentum of electrons in the Meissner current
and ionic angular momentum is not likely to be a useful
experimental test of our proposal (the earlier suggestion was
made before we fully realized the important role played by
spin–orbit coupling). Rather, experimental confirmation (or
refutation) of our proposed explanation for the missing angular
momentum of superconductors should occur by experimentally
testing key predictions of the theory, namely the existence
(or lack thereof) of charge inhomogeneity and resulting
electric fields [38], and/or the existence (or lack thereof) of
macroscopic spin current flow of the predicted magnitude near
the surface of superconductors [25].

In summary, we propose that the Meissner effect
represents an ‘anomaly’ within the conventional theory of
superconductivity: an observation that cannot be explained
within the conventional framework and is of sufficient
significance to call the entire framework into question [39].
The reader may argue that the Meissner effect was discovered
75 years ago, and it is not generally regarded to be an
anomaly. We argue that this illustrates the phenomenon of
‘retrorecognition’ described by Lightman and Gingerich [40]:
anomalies are often recognized as such only after an
explanation of them is found in a new theoretical framework.
Before that time, according to Lightman and Gingerich ‘an
anomalous fact may be unquestioned or accepted as a given
in the old paradigm. . . not widely regarded as important or
legitimized until a good explanation is at hand in a new
paradigm. . . scientists may be so resistant to replacing their
current paradigm that they cannot acknowledge certain facts
as anomalous. . .. If unexplained facts can be glossed over
or reduced in importance or simply accepted as givens, the
possible inadequacy of the current theory does not have to be
confronted’ [40].

Following that same pattern, it was only after we
found that superconductors expel negative charge from
their interior [41], according to the theory of hole
superconductivity [26], that we recognized that the Lorentz
force acting on the radially expelled charge provides a
natural dynamical origin for the Meissner effect [14], while
no comparable intuitive explanation is provided by the
conventional theory. Nevertheless, the magnitude of electronic
angular momentum could not be explained in the absence
of a mechanism to transfer angular momentum to the ionic
lattice [5]. Only after the essential role of the spin–orbit
interaction was recognized [25] did it become clear, as
discussed in this paper, that this interaction provides a natural
way for the ions to acquire the angular momentum needed to
explain the Meissner effect quantitatively.
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